stack.append([0, 0])
l = l + 1
if(l == 0):
- print "\n&=",
+ print "\n &=",
elif(l > 3):
- print "\\\\ \n&=",
+ print "\\\\ \n &=",
l = 1
else:
- print "\n=",
+ print "\n =",
if(d < 0):
print "-",
continue
- print "\\legend[L]{", z, "}{", n, "}",
+ print " \\legend[L]{", z, "}{", n, "}",
if(z > n):
stack.append([z % n, n])
d = d * (-1)
print
- print "=", d
+ print " =", d
print "\\end{align}"
return d
l = l + 1
if(l == 0):
- print "\n&=",
+ print " \n&=",
+ l = 1
elif(l > 3):
print "\\\\ \n&=",
l = 1
if(d < 0):
print "-",
- print "\\legend[J]{", z, "}{", n, "}",
+ print " \\legend[J]{", z, "}{", n, "}",
if(z > n):
print
print "=", d
- print "\\end{align}"
+ print "\\end{align}"
return d
-print jacobi_tex(69, 97)
+#print jacobi_tex(1215,1381)
% every time \@writemodule was called.
\NeedsTeXFormat{LaTeX2e}[1994/12/01]
-\ProvidesPackage{python}[2007/06/07 v0.21 Python in LaTeX]
+%\ProvidesPackage{python}[2007/06/07 v0.21 Python in LaTeX]
\newwrite\@out
\newwrite\@module
\usepackage{graphicx}
\usepackage{fancyhdr}
% \usepackage{emaxima}
+\usepackage{../python}
+
-\newcommand{\legend}[3][]{\left( \frac{#2}{#3}\right)_{#1}}
\begin{document}
-\begin{align}
-\legend[J]{ 69 }{ 97 }
-&= \legend[J]{ 97 }{ 69 }
-= \legend[J]{ 28 }{ 69 }
-= \legend[J]{ 7 }{ 69 }
-= \legend[J]{ 69 }{ 7 } \\
-&= \legend[J]{ 6 }{ 7 }
-= -1
-\end{align}
+\begin{python}
+import ../lib
+lib.legendre_tex(123,12)
+\end{python}
\def\ggT{\text{ggT}}
\def\sgn{\text{sgn}}
+\newcommand{\legend}[3][]{\left( \frac{#2}{#3}\right)_{#1}}
+
\def\datum{\date}
\pagestyle{fancy}
\end{subequations}
Mit Legendresymbol
\begin{subequations}
-\begin{align}
-\left( \frac{1215}{1381} \right)_{L} = \left( \frac{3^{5} 5}{1381} \right)_{L} = \left( \frac{3}{1381} \right)_{L}^{5} \cdot \left( \frac{5}{1381} \right)_{L} = \left( \frac{3}{1381} \right)_{L} \cdot \left( \frac{5}{1381} \right)_{L} = \\
-= \left( \frac{1381}{3} \right)_{L} \cdot \left( \frac{1381}{5} \right)_{L} = \left( \frac{1}{3} \right)_{L} \cdot \left( \frac{1}{5} \right)_{L} = 1
-\end{align}
+\begin{python}
+import lib
+lib.legendre_tex(1215,1381)
+\end{python}
\end{subequations}
Mit Jacobisymbol:
\begin{subequations}
-\begin{align}
-\left( \frac{1215}{1381} \right)_{J} = \left( \frac{1381}{1215} \right)_{J} = \left( \frac{166}{1215} \right)_{J} = \left( \frac{2 \cdot 83}{1215} \right)_{J} = \left( \frac{2}{1215} \right)_{J} \cdot \left( \frac{83}{1215} \right)_{J} = \\
-\stackrel{1215 \equiv -1 \mod 8} = \left( \frac{83}{1215} \right)_{J} = \left( \frac{1215}{83} \right)_{J} = \left( \frac{53}{83} \right)_{J} = \left( \frac{83}{53} \right)_{J} = \left( \frac{30}{53} \right)_{J} = \left( \frac{2}{53} \right)_{J} \cdot \left( \frac{15}{53} \right)_{J} = \\
-= - \left( \frac{53}{15} \right)_{J} = - \left( \frac{8}{15} \right)_{J} = - \left( \left( \frac{2}{15} \right)_{J} \right)^{4} = -1
-\end{align}
+\begin{python}
+import lib
+lib.jacobi_tex(1215,1381)
+\end{python}
\end{subequations}