\psfrag{fehler 1t05n05 A}{\tiny Fehler}
\psfrag{Zeit 1t05n05 A}{\tiny Zeit}
\psfrag{cond 1t05n05 A}{\tiny Kondition}
-\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $(\min h_{min})/(\max h_{max})$}
-\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $(\min h_{max})/(\max h_{max})$}
-\psfrag{min hmin/hmax 1t05n05 A}{\tiny $(\min h_{min})/h_{max}$}
+\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $\min (h_{\min})/(\max h_{\max})$}
+\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $\min (h_{\max})/(\max h_{\max})$}
+\psfrag{min hmin/hmax 1t05n05 A}{\tiny $\min (h_{\min}/h_{\max})$}
\psfrag{tmu 132t05n05 A}{\tiny $\tilde \mu$ analytisch}
\psfrag{fehler 1t1n0 A}{\tiny Fehler (uniform)}
\psfrag{Zeit 1t1n0 A}{\tiny Zeit (uniform)}
\psfrag{cond 1t1n0 A}{\tiny Kondition (uniform)}
-\psfrag{min hmin/max hmax 1t1n0 A}{\tiny $(\min h_{min})/(\max h_{max})$ (uniform)}
-\psfrag{min hmax/max hmax 1t1n0 A}{\tiny $(\min h_{max})/(\max h_{max})$ (uniform)}
-\psfrag{min hmin/hmax 1t1n0 A}{\tiny $(\min h_{min})/h_{max}$ (uniform)}
+\psfrag{min hmin/max hmax 1t1n0 A}{\tiny $\min (h_{\min})/(\max h_{\max})$ (uniform)}
+\psfrag{min hmax/max hmax 1t1n0 A}{\tiny $\min (h_{\max})/(\max h_{\max})$ (uniform)}
+\psfrag{min hmin/hmax 1t1n0 A}{\tiny $\min (h_{\min}/h_{\max})$ (uniform)}
\psfrag{tmu 1t05n0 A}{\tiny $\tilde \mu$ (isotrop)}
\psfrag{eta 1t05n0 A}{\tiny $\eta$ (isotrop)}
\psfrag{fehler 1t05n0 A}{\tiny Fehler (isotrop)}
\psfrag{Zeit 1t05n0 A}{\tiny Zeit (isotrop)}
\psfrag{cond 1t05n0 A}{\tiny Kondition (isotrop)}
-\psfrag{min hmin/max hmax 1t05n0 A}{\tiny $(\min h_{min})/(\max h_{max})$ (isotrop)}
-\psfrag{min hmax/max hmax 1t05n0 A}{\tiny $(\min h_{max})/(\max h_{max})$ (isotrop)}
-\psfrag{min hmin/hmax 1t05n0 A}{\tiny $(\min h_{min})/h_{max}$ (isotrop)}
+\psfrag{min hmin/max hmax 1t05n0 A}{\tiny $\min (h_{\min})/(\max h_{\max})$ (isotrop)}
+\psfrag{min hmax/max hmax 1t05n0 A}{\tiny $\min (h_{\max})/(\max h_{\max})$ (isotrop)}
+\psfrag{min hmin/hmax 1t05n0 A}{\tiny $\min (h_{\min}/h_{\max})$ (isotrop)}
\psfrag{tmu 1t05n05 A}{\tiny $\tilde \mu$ (anisotrop)}
\psfrag{eta 1t05n05 A}{\tiny $\eta$ (anisotrop)}
\psfrag{fehler 1t05n05 A}{\tiny Fehler (anisotrop)}
\psfrag{Zeit 1t05n05 A}{\tiny Zeit (anisotrop)}
\psfrag{cond 1t05n05 A}{\tiny Kondition (anisotrop)}
-\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $(\min h_{min})/(\max h_{max})$ (anisotrop)}
-\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $(\min h_{max})/(\max h_{max})$ (anisotrop)}
-\psfrag{min hmin/hmax 1t05n05 A}{\tiny $(\min h_{min})/h_{max}$ (anisotrop)}
+\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $\min (h_{\min})/(\max h_{\max})$ (anisotrop)}
+\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $\min (h_{\max})/(\max h_{\max})$ (anisotrop)}
+\psfrag{min hmin/hmax 1t05n05 A}{\tiny $\min (h_{\min}/h_{\max})$ (anisotrop)}
\caption{2D Quad im Vergleich vollanalytisch $V\phi = 1$}
\centering
\begin{figure}[ht]
\caption{3D FichCube adaptiv anisotrop vollanalytisch $V\phi = 1$}
\centering
-\label{fig:exmplAA_3DQuad_A}
+\label{fig:exmplAA_3DFichCube_A}
\subfloat[Fehler]{\includegraphics[width=0.7\textwidth]{fig/1t05n05_3DFichCube_error}}\\
\subfloat[Seitenverhältnis]{\includegraphics[width=0.5\textwidth]{fig/1t05n05_3DFichCube_hminmax}}
\subfloat[Kondition]{\includegraphics[width=0.5\textwidth]{fig/1t05n05_3DFichCube_cond}}
\end{figure}
+\begin{figure}[ht]
+\caption{3D Cube adaptiv anisotrop vollanalytisch $V\phi = 1$}
+\centering
+\label{fig:exmplAA_3DCube_A}
+\subfloat[Fehler]{\includegraphics[width=0.7\textwidth]{fig/1t05n05_3DCube_error}}\\
+\subfloat[Seitenverhältnis]{\includegraphics[width=0.5\textwidth]{fig/1t05n05_3DCube_hminmax}}
+\subfloat[Kondition]{\includegraphics[width=0.5\textwidth]{fig/1t05n05_3DCube_cond}}
+\end{figure}
+
\begin{figure}[ht]
\definecolor{fig_help}{rgb}{.9,.6,0}
\definecolor{fig_err}{rgb}{.9,0,0}
-\newcommand{\figLineA}[1][]{\textcolor{fig_line1}{dunkelgrün#1}}
-\newcommand{\figLineB}[1][]{\textcolor{fig_line2}{zyan#1}}
-\newcommand{\figLineC}[1][]{\textcolor{fig_line3}{magenta#1}}
-\newcommand{\figLineD}[1][]{\textcolor{fig_line4}{blau#1}}
-\newcommand{\figHelp}[1][]{\textcolor{fig_help}{orange#1}}
-\newcommand{\figErr}[1][]{\textcolor{fig_err}{rot#1}}
+\newcommand{\figLineA}[1][]{{\color{fig_line1}dunkelgrün#1}}
+\newcommand{\figLineB}[1][]{{\color{fig_line2}zyan#1}}
+\newcommand{\figLineC}[1][]{{\color{fig_line3}magenta#1}}
+\newcommand{\figLineD}[1][]{{\color{fig_line4}blau#1}}
+\newcommand{\figHelp}[1][]{{\color{fig_help}orange#1}}
+\newcommand{\figErr}[1][]{{\color{fig_err}rot#1}}
\usepackage{fancyhdr}
\newcommand{\abs}[1]{\lvert#1\rvert}
\newcommand{\Abs}[1]{ \left\lvert#1\right\rvert}
-\newcommand{\todo}[1]{\textcolor{dred}{#1}}
-\newcommand{\why}[1]{\textcolor{dblue}{#1}}
+\newcommand{\todo}[1]{{\color{dred}#1}}
+\newcommand{\why}[1]{{\color{dblue}#1}}
\newcommand{\Matlab}{{\sc Matlab}}
\newcommand{\Cpp}{{\sc C++}}
\label{exmpl1:f2s:part}
\end{figure}
+\subsection{Berechnung der $V$ Matrix}
\clearpage
% %\mu_{\ell}^2 &= \norm{\varrho_{\ell}^{1/2}(\phi_{\frac l 2}-\Pi_{\ell}\phi_{\frac l 2})}_{\L^2(\T)}^2 \\
% %&=\sum_{T\in \T_{\ell}}\mu_{\ell}(T)^2\\
% \mu_{\ell}(T)^2 &= \norm{\varrho_{\ell}^{1/2}(\phi_{\frac l 2}-\Pi_{\ell}\phi_{\frac l 2})}_{\L^2(\T)}^2 \\
-% &= h_{min}(T)\norm{\phi_{\frac l 2}-\Pi_{\ell}\phi_{\frac l 2}}_{\L^2(\T)}^2 \\
+% &= h_{\min}(T)\norm{\phi_{\frac l 2}-\Pi_{\ell}\phi_{\frac l 2}}_{\L^2(\T)}^2 \\
% && T_j \in \tau_{\ell}, t_j^{(1)},\dots,t_j^{(4)} \in \tau_{\frac l 2} \\
% \phi_{\frac l 2}|_{T_j} &=x_j^{(1)}\chi_{t_j^{(1)}}+\dots+x_j^{(4)}\chi_{t_j^{(4)}}\\
% \Pi_{\ell}\phi_{\frac l 2}|_{T_j}&=\frac 1 {\abs{T_j}}\int_{T_j}\phi_{\frac l 2}d\Gamma\\
% &=\sum_{k=1}^4 \int_{t_j^{(k)}}(x_j^{(k)}-m_j)^2d\Gamma\\
% &=\sum_{k=1}^4 \abs{t_j^{(k)}}(x_j^{(k)}-m_j)^2\\
% &=\frac {\abs{T_j}} 4\sum_{k=1}^4 (x_j^{(k)}-m_j)^2\\
-% \mu_{\ell}(T_j)^2 &= \frac{ h_{min}(T_j) \abs{T_j}}{4} \sum_{k=1}^4{(x_j^{(k)}-m_j)^2}
+% \mu_{\ell}(T_j)^2 &= \frac{ h_{\min}(T_j) \abs{T_j}}{4} \sum_{k=1}^4{(x_j^{(k)}-m_j)^2}
% \end{align*}
%
\begin{align*}
\{ (0,0,0), (1,0,0), (1,1,0), (0,1,0) \}.
\end{align*}
+\todo{Des Weiteren werden wir als exakte Lösung $\enorm{\phi}^2 = 4.609193$ annehmen.}
+\begin{figure}[ht]
+ \centering
+ \includegraphics[width=0.5\textwidth]{fig/exmpl_2DQuad_ref}
+ \caption{Quadrat in der $z=0$ Ebene}
+ \label{fig:mesh:2DQuad}
+\end{figure}
+\subsubsection{Vergleich verschiedener Verfeinerungsstrategien}
\noindent
Zunächst wollen wir drei Verfeinerungs-Strategien genauer untersuchen. Hierzu betrachten wir zum einen die Strategie "`uniform"' ($\theta=1,\nu=0$) bei der das verfeinerte Netz $\T_{\ell+1}$ durch isotrope Verfeinerung aller Elemente entsteht, also jedes Element wird in vier gleich Große Elemente geteilt. In der zweiten Strategie "`isotrop"' ($\theta=0.5,\nu=0$) werden wir zulassen, dass nicht alle Elemente verfeinert werden, also nur eine Teilmenge wird jeweils in vier gleich große Elemente geteilt. Und in der letzten Strategie "`anisotrop"' ($\theta=0.5,\nu=0.5$) werden wir außerdem anisotrope Teilungen zulassen, also ein Teil der Elemente wird geeignet in zwei oder vier gleich Große Elemente geteilt. Für alle drei Strategien werden wir den Algorithmus \ref{alg:adapt} mit entsprechenden Parametern $\theta,\nu$ verwenden.
\psfrag{fehler 1t1n0 A}{\tiny Fehler (uniform)}
\psfrag{Zeit 1t1n0 A}{\tiny Zeit (uniform)}
\psfrag{cond 1t1n0 A}{\tiny Kondition (uniform)}
-\psfrag{min hmin/max hmax 1t1n0 A}{\tiny $(\min h_{min})/(\max h_{max})$ (uniform)}
-\psfrag{min hmax/max hmax 1t1n0 A}{\tiny $(\min h_{max})/(\max h_{max})$ (uniform)}
-\psfrag{min hmin/hmax 1t1n0 A}{\tiny $(\min h_{min})/h_{max}$ (uniform)}
+\psfrag{min hmin/max hmax 1t1n0 A}{\tiny $\min (h_{\min})/\max ( h_{\max})$ (uniform)}
+\psfrag{min hmax/max hmax 1t1n0 A}{\tiny $\min ( h_{\max})/\max ( h_{\max})$ (uniform)}
+\psfrag{min hmin/hmax 1t1n0 A}{\tiny $\min (h_{\min}/h_{\max})$ (uniform)}
\psfrag{tmu 1t05n0 A}{\tiny $\tilde \mu$ (isotrop)}
\psfrag{eta 1t05n0 A}{\tiny $\eta$ (isotrop)}
\psfrag{fehler 1t05n0 A}{\tiny Fehler (isotrop)}
\psfrag{Zeit 1t05n0 A}{\tiny Zeit (isotrop)}
\psfrag{cond 1t05n0 A}{\tiny Kondition (isotrop)}
-\psfrag{min hmin/max hmax 1t05n0 A}{\tiny $(\min h_{min})/(\max h_{max})$ (isotrop)}
-\psfrag{min hmax/max hmax 1t05n0 A}{\tiny $(\min h_{max})/(\max h_{max})$ (isotrop)}
-\psfrag{min hmin/hmax 1t05n0 A}{\tiny $(\min h_{min})/h_{max}$ (isotrop)}
+\psfrag{min hmin/max hmax 1t05n0 A}{\tiny $\min (h_{\min})/\max ( h_{\max})$ (isotrop)}
+\psfrag{min hmax/max hmax 1t05n0 A}{\tiny $\min ( h_{\max})/\max ( h_{\max})$ (isotrop)}
+\psfrag{min hmin/hmax 1t05n0 A}{\tiny $\min (h_{\min}/h_{\max})$ (isotrop)}
\psfrag{tmu 1t05n05 A}{\tiny $\tilde \mu$ (anisotrop)}
\psfrag{eta 1t05n05 A}{\tiny $\eta$ (anisotrop)}
\psfrag{fehler 1t05n05 A}{\tiny Fehler (anisotrop)}
\psfrag{Zeit 1t05n05 A}{\tiny Zeit (anisotrop)}
\psfrag{cond 1t05n05 A}{\tiny Kondition (anisotrop)}
-\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $(\min h_{min})/(\max h_{max})$ (anisotrop)}
-\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $(\min h_{max})/(\max h_{max})$ (anisotrop)}
-\psfrag{min hmin/hmax 1t05n05 A}{\tiny $(\min h_{min})/h_{max}$ (anisotrop)}
+\psfrag{min hmin/max hmax 1t05n05 A}{\tiny $\min (h_{\min})/\max (h_{\max})$ (anisotrop)}
+\psfrag{min hmax/max hmax 1t05n05 A}{\tiny $\min (h_{\max})/\max (h_{\max})$ (anisotrop)}
+\psfrag{min hmin/hmax 1t05n05 A}{\tiny $\min (h_{\min}/h_{\max})$ (anisotrop)}
\centering
-\subfloat[Fehler \label{fig:2DQuad:verfeinern:err}]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_error}}
-\subfloat[Seitenverhältnis]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_hminmax}}\\
-\subfloat[Kondition]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_cond}}
-\subfloat[Zeit]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_time}}
+\subfloat[Fehler und Fehlerschätzer für das Quadrat \label{fig:2DQuad:verfeinern:err}]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_error}}
+\subfloat[Seitenverhältnisse für das Quadrat \label{fig:2DQuad:verfeinern:hminmax}]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_hminmax}}\\
+\subfloat[Kondition der $V_{\ell}$ Matrix für das Quadrat \label{fig:2DQuad:verfeinern:cond}]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_cond}}
+\subfloat[Berechnungszeit für das Quadrat \label{fig:2DQuad:verfeinern:time}]{\includegraphics[width=0.5\textwidth]{fig/1tn_2DQuad_time}}
\caption{Vergleich der Verfeinerungsstrategien auf dem Quadrat}
\label{fig:2DQuad:verfeinern}
\end{figure}
\noindent
In Abbildung \ref{fig:2DQuad:verfeinern:err} betrachten wir für die jeweilige Strategie jeweils die Fehlerschätzer $\tilde \mu$ und $\eta$, sowie den Fehler gegenüber der tatsächlichen Lösung. Die Werte wurden jeweils über die Elementanzahl des $\T_{\ell}$ Netzes aufgetragen. Anhand der \figLineA[en] Linien erkennen wir, dass der Fehler bei der "`uniformen"' Strategie mit etwa $\O(N^{-1/4})$ gegen $0$ strebt. Gerechnet wurde hier bis zu einer Elementanzahl des $\T_{\ell}$ Netzes von etwa 3000, für das der Fehler der Energienorm im Bereich von 1 liegt.
-Anhand der Linien in \figLineB, beobachten wir eine schnellere Konvergenz der "`isotropen"' Strategie. Denn hier lässt sich eine Konvergenzrate von $\O(N^{-1/2})$ gegen 0 erkennen. Bei dieser Strategie erreichen wir für die gleiche Elementanzahl des $\T_{\ell}$ Gitters schon einen Fehler im Bereich von 0.1.
-Betrachten wir nun die Strategie "`anisotrop"' in \figLineC, so beobachten wir eine kurzzeitig sehr starke Konvergenz, welche dann von unten gegen eine sehr gute Konvergenzrate von $\O(N^{-3/4})$ strebt. Hierbei erkennen wir, dass der Fehler der Energienorm schon im Bereich von 0.01 für die gleiche Elementanzahl liegt. Jedoch sehen wir auch, dass der Fehlerschätzer $\tilde \mu$ ab dieser Elementanzahl seine Konvergenzrate verliert und damit unzuverlässig wird.
\noindent
-Weiterhin lässt sich für jede Strategie anhand der Parallelität der Fehlerschätzer zum tatsächlichen Fehler, die Effektivität und Zuverlässigkeit der Fehlerschätzer erkennen. Sowie auch die Äquivalents des $h-h/2$ Schätzers zum lokalen $\tilde \mu$ Schätzers aufgrund der Parallelität zu beobachten ist. Außerdem beschreiben die Fehlerschätzer auch in der Größenordnung den tatsächlichen Fehler sehr gut.
+Anhand der Linien in \figLineB[], beobachten wir eine schnellere Konvergenz der "`isotropen"' Strategie. Denn hier lässt sich eine Konvergenzrate von $\O(N^{-1/2})$ gegen 0 erkennen. Bei dieser Strategie erreichen wir für die gleiche Elementanzahl des $\T_{\ell}$ Gitters schon einen Fehler im Bereich von 0.1.
+
+\noindent
+Betrachten wir nun die Strategie "`anisotrop"' in \figLineC[], so beobachten wir eine kurzzeitig sehr starke Konvergenz, welche dann von unten gegen eine sehr gute Konvergenzrate von $\O(N^{-3/4})$ strebt. Hierbei erkennen wir, dass der Fehler der Energienorm schon im Bereich von 0.01 für die gleiche Elementanzahl liegt. Jedoch sehen wir auch, dass der Fehlerschätzer $\tilde \mu$ ab dieser Elementanzahl seine Konvergenzrate verliert und damit unzuverlässig wird.
+
+\noindent
+Weiterhin lässt sich für jede Strategie anhand der Parallelität der Fehlerschätzer zum tatsächlichen Fehler, die Effektivität und Zuverlässigkeit der Fehlerschätzer erkennen. Sowie auch die Äquivalents des $h-h/2$ Schätzers zum lokalen $\tilde \mu$ Schätzers aufgrund der Parallelität zu beobachten ist. Außerdem beschreiben die Fehlerschätzer den tatsächlichen Fehler auch in der Größenordnung sehr gut.
+
+\noindent
+In Abbildung \ref{fig:2DQuad:verfeinern:hminmax} betrachten wir bestimmte Eigenschaften zwischen den Seitenverhältnissen der Elemente aus dem $\T_{\ell}$ Netz für die jeweilige Strategie. $h_{\min}$ steht hierbei für die kürzere Seite eines Rechtecks $T \in \T_{\ell}$ und $h_{\max}$ für die längere der beiden Seiten. Wir werden nun das Verhältnis der kleinsten kurzen Seite gegenüber der größten langen Seite $\min(h_{\min}) / \max (h_{\max})$, das Verhältnis der kleinsten langen gegenüber der größten langen Seite $\min(h_{\max}) / \max (h_{\max})$, sowie das kleinste Verhältnis der kurzen gegenüber der langen Seiten $\min(h_{\min} /h_{\max})$ für die drei Strategien genauer betrachten.
+
+\noindent
+Bei der "`uniformen"' Strategie, dargestellt durch die \figLineA[e] Linien, sind wie erwartet alle Verhältnisse gleich 1 da alle Elemente deckungsgleich sind.
+
+\noindent
+Bei der "`isotropen"' Strategie in \figLineB[] ist am Verhältnis $\min(h_{\min} /h_{\max}) = 1$ gut zu erkennen, dass alle Elemente Quadrate sind. Die beiden anderen Verhältnisse zeigen, dass für zunehmende Elementanzahl die Differenz der Elementgrößen zunimmt.
+
+\noindent
+Anhand der \figLineC[] farbenen Linien, also der "`anisotropen"' Strategie beobachten wir, am kleiner werdenden Verhältnis $\min(h_{\min} /h_{\max})$, dass mit zunehmender Elementanzahl lange schmale Elemente entstehen. Am kleiner werden der anderen beiden Verhältnisse erkennen wir auch hier, dass die Differenz der Elementgrößen zunimmt.
+
+\noindent
+Um auch die Stabilität der drei Strategien untersuchen zu können, sehen wir in der Abbildung \ref{fig:2DQuad:verfeinern:cond} die Konditionszahlen der $V_{\ell}$ Matrix in Abhängigkeit der Elementanzahl.
+\subsubsection{Vergleich verschiedener Quadraturgrade}
+\subsubsection{Vergleich verschiedener Berechnungsarten}
% Zum Plotten (Abb.\ref{fig:exmplAA_2DQuad})werden noch folgende Schritte ausgeführt
% \begin{itemize}
\centering
\label{fig:objects}
\subfloat[2D L Shape\label{fig:mesh:2DLShape}]{\includegraphics[width=0.5\textwidth]{fig/exmpl_2DLShape_ref}}
-\subfloat[2D Quad\label{fig:mesh:2DQuad}]{\includegraphics[width=0.5\textwidth]{fig/exmpl_2DQuad_ref}}\\
+% \subfloat[2D Quad\label{fig:mesh:2DQuad}]{\includegraphics[width=0.5\textwidth]{fig/exmpl_2DQuad_ref}}\\
\subfloat[3D Cube\label{fig:mesh:3DCube}]{\includegraphics[width=0.5\textwidth]{fig/exmpl_3DCube_ref}}
\subfloat[3D FichCube\label{fig:mesh:3DFichCube}]{\includegraphics[width=0.5\textwidth]{fig/exmpl_3DFichCube_ref}}
\end{figure}
%!PS-Adobe-2.0 EPSF-1.2
%%Creator: MATLAB, The MathWorks, Inc. Version 8.1.0.604 (R2013a). Operating System: Linux 3.7.0-7-generic #15-Ubuntu SMP Sat Dec 15 16:34:25 UTC 2012 x86_64.
%%Title: ../doc/fig/1t05n05_2DLShape_cond.eps
-%%CreationDate: 04/13/2013 16:13:39
+%%CreationDate: 04/13/2013 16:29:51
%%DocumentNeededFonts: Helvetica
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%Extensions: CMYK
portraitMode 0150 5100 csm
296 165 4143 3301 MR c np
-82 dict begin %Colortable dictionary
+83 dict begin %Colortable dictionary
/c0 { 0.000000 0.000000 0.000000 sr} bdef
/c1 { 1.000000 1.000000 1.000000 sr} bdef
/c2 { 0.900000 0.000000 0.000000 sr} bdef
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
- 624 2226 mt 661 2226 L
-4344 2226 mt 4306 2226 L
+ 624 2838 mt 661 2838 L
+4344 2838 mt 4306 2838 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 447 2256 mt
+ 447 2868 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 539 2205 mt
-(5) s
+ 539 2817 mt
+(2) s
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 2471 mt 661 2471 L
+4344 2471 mt 4306 2471 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 447 2501 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 539 2450 mt
+(4) s
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 2104 mt 661 2104 L
+4344 2104 mt 4306 2104 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 447 2134 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 539 2083 mt
+(6) s
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
+ 624 1737 mt 661 1737 L
+4344 1737 mt 4306 1737 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 447 1767 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 539 1716 mt
+(8) s
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 1370 mt 661 1370 L
+4344 1370 mt 4306 1370 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 447 1400 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 539 1349 mt
+(10) s
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
- 624 1248 mt 661 1248 L
-4344 1248 mt 4306 1248 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 1003 mt 661 1003 L
+4344 1003 mt 4306 1003 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 447 1278 mt
+ 447 1033 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 539 1227 mt
+ 539 982 mt
+(12) s
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 3205 mt 624 3205 L
+ 624 636 mt 661 636 L
+4344 636 mt 4306 636 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 447 666 mt
(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 539 615 mt
+(14) s
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
539 249 mt
-(15) s
+(16) s
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 3205 mt 624 3205 L
624 270 mt 4344 270 L
624 3205 mt 624 270 L
4344 3205 mt 4344 270 L
-gs 624 270 3721 2936 MR c np
+gs 624 269 3721 2936 MR c np
/c8 { 0.000000 0.300000 0.300000 sr} bdef
c8
-100 -94 91 -355 92 -138 84 -164 80 -149 70 -169 73 5 76 -173
-71 -146 74 -143 65 -118 67 -66 66 -169 77 -8 62 -110 74 -66
-95 0 95 -176 99 5 133 39 147 -163 141 22 190 -139 254 -147
-396 -109 1067 3029 26 MP stroke
+104 -85 41 206 38 -92 76 -80 100 -88 91 -333 92 -129 84 -154
+80 -139 70 -159 73 5 76 -162 71 -138 74 -133 65 -111 67 -62
+66 -159 77 -6 62 -104 74 -62 95 1 95 -165 99 4 133 36
+147 -152 141 21 190 -131 254 -138 396 -102 1067 3040 30 MP stroke
gr
c8
-gs 1016 247 2875 2834 MR c np
- 25 25 1067 3029 FO
- 25 25 1463 2920 FO
- 25 25 1717 2773 FO
- 25 25 1907 2634 FO
- 25 25 2048 2656 FO
- 25 25 2195 2493 FO
- 25 25 2328 2532 FO
- 25 25 2427 2537 FO
- 25 25 2522 2361 FO
- 25 25 2617 2361 FO
- 25 25 2691 2295 FO
- 25 25 2753 2185 FO
- 25 25 2830 2177 FO
- 25 25 2896 2008 FO
- 25 25 2963 1942 FO
- 25 25 3028 1824 FO
- 25 25 3102 1681 FO
- 25 25 3173 1535 FO
- 25 25 3249 1362 FO
- 25 25 3322 1367 FO
- 25 25 3392 1198 FO
- 25 25 3472 1049 FO
- 25 25 3556 885 FO
- 25 25 3648 747 FO
- 25 25 3739 392 FO
- 25 25 3839 298 FO
+gs 1016 257 3134 2835 MR c np
+ 25 25 1067 3040 FO
+ 25 25 1463 2938 FO
+ 25 25 1717 2800 FO
+ 25 25 1907 2669 FO
+ 25 25 2048 2690 FO
+ 25 25 2195 2538 FO
+ 25 25 2328 2574 FO
+ 25 25 2427 2578 FO
+ 25 25 2522 2413 FO
+ 25 25 2617 2414 FO
+ 25 25 2691 2352 FO
+ 25 25 2753 2248 FO
+ 25 25 2830 2242 FO
+ 25 25 2896 2083 FO
+ 25 25 2963 2021 FO
+ 25 25 3028 1910 FO
+ 25 25 3102 1777 FO
+ 25 25 3173 1639 FO
+ 25 25 3249 1477 FO
+ 25 25 3322 1482 FO
+ 25 25 3392 1323 FO
+ 25 25 3472 1184 FO
+ 25 25 3556 1030 FO
+ 25 25 3648 901 FO
+ 25 25 3739 568 FO
+ 25 25 3839 480 FO
+ 25 25 3915 400 FO
+ 25 25 3953 308 FO
+ 25 25 3994 514 FO
+ 25 25 4098 429 FO
gr
-gs 624 270 3721 2936 MR c np
+gs 624 269 3721 2936 MR c np
+DA
+c2
+0 -2794 3879 3081 2 MP stroke
gr
+c2
+DA
0 sg
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
390 1910 mt -90 rotate
(Kondition) s
90 rotate
- 612 3236 mt
+ 612 3235 mt
( ) s
-4333 300 mt
+4333 299 mt
( ) s
+SO
1 sg
-0 130 935 0 0 -130 665 442 4 MP
+0 232 935 0 0 -232 665 543 4 MP
PP
--935 0 0 130 935 0 0 -130 665 442 5 MP stroke
+-935 0 0 232 935 0 0 -232 665 543 5 MP stroke
2.77778 w
DO
SO
4.16667 w
0 sg
- 665 442 mt 1600 442 L
- 665 442 mt 665 312 L
- 994 408 mt
+ 665 543 mt 1600 543 L
+ 665 543 mt 665 311 L
+ 994 406 mt
(cond 1t05n05 A) s
-gs 665 312 936 131 MR c np
+gs 665 311 936 233 MR c np
c8
-253 0 715 377 2 MP stroke
-gs 791 326 103 103 MR c np
- 25 25 842 377 FO
+253 0 715 376 2 MP stroke
+gs 791 325 103 103 MR c np
+ 25 25 842 376 FO
gr
gr
c8
+0 sg
+ 994 509 mt
+(erste Fehler) s
+gs 665 311 936 233 MR c np
+DA
+c2
+253 0 715 477 2 MP stroke
+SO
+gr
+
+c2
end %%Color Dict
%!PS-Adobe-2.0 EPSF-1.2
%%Creator: MATLAB, The MathWorks, Inc. Version 8.1.0.604 (R2013a). Operating System: Linux 3.7.0-7-generic #15-Ubuntu SMP Sat Dec 15 16:34:25 UTC 2012 x86_64.
%%Title: ../doc/fig/1t05n05_2DLShape_error.eps
-%%CreationDate: 04/13/2013 16:13:38
+%%CreationDate: 04/13/2013 16:29:51
%%DocumentNeededFonts: Helvetica
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%Extensions: CMYK
portraitMode 0150 5100 csm
294 165 4145 3301 MR c np
-80 dict begin %Colortable dictionary
+81 dict begin %Colortable dictionary
/c0 { 0.000000 0.000000 0.000000 sr} bdef
/c1 { 1.000000 1.000000 1.000000 sr} bdef
/c2 { 0.900000 0.000000 0.000000 sr} bdef
gs 624 270 3721 2936 MR c np
/c8 { 0.000000 0.300000 0.300000 sr} bdef
c8
-100 13 91 70 92 67 84 64 80 62 70 58 73 60 76 61
-71 57 74 55 65 50 67 53 66 54 77 55 62 54 74 48
-95 55 95 46 99 48 133 43 147 47 141 43 190 23 254 46
-396 73 1067 888 26 MP stroke
-gs 1016 837 2875 1408 MR c np
+104 -181 41 419 38 -316 76 -165 100 13 91 70 92 67 84 64
+80 62 70 58 73 60 76 61 71 57 74 55 65 50 67 53
+66 54 77 55 62 54 74 48 95 55 95 46 99 48 133 43
+147 47 141 43 190 23 254 46 396 73 1067 888 30 MP stroke
+gs 1016 837 3134 1408 MR c np
25 25 1067 888 FO
25 25 1463 961 FO
25 25 1717 1007 FO
25 25 3648 2110 FO
25 25 3739 2180 FO
25 25 3839 2193 FO
+ 25 25 3915 2028 FO
+ 25 25 3953 1712 FO
+ 25 25 3994 2131 FO
+ 25 25 4098 1950 FO
gr
-100 51 91 49 92 47 84 56 80 51 70 49 73 53 76 52
-71 57 74 37 65 37 67 45 66 45 77 53 62 45 74 50
-95 54 95 47 99 48 133 45 147 34 141 28 190 12 254 43
-396 83 1067 1253 26 MP stroke
-gs 1016 1202 2875 1274 MR c np
+104 8 41 6 38 4 76 37 100 51 91 49 92 47 84 56
+80 51 70 49 73 53 76 52 71 57 74 37 65 37 67 45
+66 45 77 53 62 45 74 50 95 54 95 47 99 48 133 45
+147 34 141 28 190 12 254 43 396 83 1067 1253 30 MP stroke
+gs 1016 1202 3134 1329 MR c np
0 j
29 50 -58 0 29 -50 1067 1286 4 MP
DP
DP
29 50 -58 0 29 -50 3839 2457 4 MP
DP
+29 50 -58 0 29 -50 3915 2494 4 MP
+DP
+29 50 -58 0 29 -50 3953 2498 4 MP
+DP
+29 50 -58 0 29 -50 3994 2504 4 MP
+DP
+29 50 -58 0 29 -50 4098 2512 4 MP
+DP
gr
-100 39 91 41 92 43 84 52 80 51 70 50 73 54 76 54
-71 58 74 47 65 48 67 55 66 54 77 61 62 48 74 55
-95 59 95 54 99 50 133 53 147 45 141 45 190 40 254 44
-396 59 1067 1072 26 MP stroke
-gs 1016 1021 2875 1362 MR c np
+104 6 41 4 38 4 76 26 100 39 91 41 92 43 84 52
+80 51 70 50 73 54 76 54 71 58 74 47 65 48 67 55
+66 54 77 61 62 48 74 55 95 59 95 54 99 50 133 53
+147 45 141 45 190 40 254 44 396 59 1067 1072 30 MP stroke
+gs 1016 1021 3134 1402 MR c np
1050 1055 mt 1084 1089 L
1084 1055 mt 1050 1089 L
1446 1114 mt 1480 1148 L
3756 2275 mt 3722 2309 L
3822 2314 mt 3856 2348 L
3856 2314 mt 3822 2348 L
+3898 2340 mt 3932 2374 L
+3932 2340 mt 3898 2374 L
+3936 2344 mt 3970 2378 L
+3970 2344 mt 3936 2378 L
+3977 2348 mt 4011 2382 L
+4011 2348 mt 3977 2382 L
+4081 2354 mt 4115 2388 L
+4115 2354 mt 4081 2388 L
gr
DD
/c9 { 0.900000 0.600000 0.000000 sr} bdef
c9
-100 40 91 36 92 36 84 33 80 32 70 27 73 29 76 30
-71 28 74 29 65 26 67 26 66 26 77 31 62 24 74 30
-95 37 95 37 99 40 133 52 147 58 141 56 190 74 254 101
-396 156 1067 478 26 MP stroke
+104 41 41 16 38 15 76 30 100 40 91 36 92 36 84 33
+80 32 70 27 73 29 76 30 71 28 74 29 65 26 67 26
+66 26 77 31 62 24 74 30 95 37 95 37 99 40 133 52
+147 58 141 56 190 74 254 101 396 156 1067 478 30 MP stroke
DO
-100 19 91 18 92 18 84 17 80 16 70 14 73 14 76 15
-71 14 74 15 65 12 67 14 66 13 77 15 62 12 74 15
-95 18 95 19 99 20 133 26 147 29 141 28 190 37 254 50
-396 78 1067 741 26 MP stroke
+104 20 41 8 38 8 76 15 100 19 91 18 92 18 84 17
+80 16 70 14 73 14 76 15 71 14 74 15 65 12 67 14
+66 13 77 15 62 12 74 15 95 18 95 19 99 20 133 26
+147 29 141 28 190 37 254 50 396 78 1067 741 30 MP stroke
DA
-100 59 91 54 92 55 84 49 80 47 70 42 73 43 76 45
-71 42 74 44 65 38 67 40 66 39 77 45 62 37 74 44
-95 56 95 56 99 59 133 78 147 88 141 83 190 112 254 151
-396 234 1067 1045 26 MP stroke
+104 61 41 24 38 23 76 45 100 59 91 54 92 55 84 49
+80 47 70 42 73 43 76 45 71 42 74 44 65 38 67 40
+66 39 77 45 62 37 74 44 95 56 95 56 99 59 133 78
+147 88 141 83 190 112 254 151 396 234 1067 1045 30 MP stroke
+c2
+0 -1838 3879 2642 2 MP stroke
gr
-c9
+c2
DA
0 sg
%%IncludeResource: font Helvetica
( ) s
SO
1 sg
-0 636 961 0 0 -636 665 3165 4 MP
+0 737 961 0 0 -737 665 3165 4 MP
PP
--961 0 0 636 961 0 0 -636 665 3165 5 MP stroke
+-961 0 0 737 961 0 0 -737 665 3165 5 MP stroke
2.77778 w
DO
SO
4.16667 w
0 sg
665 3165 mt 1626 3165 L
- 665 3165 mt 665 2529 L
- 977 2624 mt
+ 665 3165 mt 665 2428 L
+ 977 2523 mt
(tmu 1t05n05 A) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
c8
-240 0 712 2593 2 MP stroke
-gs 781 2542 103 103 MR c np
- 25 25 832 2593 FO
+240 0 712 2492 2 MP stroke
+gs 781 2441 103 103 MR c np
+ 25 25 832 2492 FO
gr
gr
c8
0 sg
- 977 2725 mt
+ 977 2624 mt
(eta 1t05n05 A) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
c8
-240 0 712 2695 2 MP stroke
-gs 781 2644 103 103 MR c np
+240 0 712 2594 2 MP stroke
+gs 781 2543 103 103 MR c np
0 j
-29 50 -58 0 29 -50 832 2728 4 MP
+29 50 -58 0 29 -50 832 2627 4 MP
DP
gr
c8
0 sg
- 977 2827 mt
+ 977 2726 mt
(fehler 1t05n05 A) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
c8
-240 0 712 2796 2 MP stroke
-gs 781 2745 103 103 MR c np
- 815 2779 mt 849 2813 L
- 849 2779 mt 815 2813 L
+240 0 712 2695 2 MP stroke
+gs 781 2644 103 103 MR c np
+ 815 2678 mt 849 2712 L
+ 849 2678 mt 815 2712 L
gr
gr
c8
0 sg
- 977 2928 mt
+ 977 2827 mt
(N-12) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
DD
c9
-240 0 712 2897 2 MP stroke
+240 0 712 2796 2 MP stroke
SO
gr
c9
0 sg
- 977 3030 mt
+ 977 2928 mt
(N-14) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
DO
c9
-240 0 712 2998 2 MP stroke
+240 0 712 2897 2 MP stroke
SO
gr
c9
0 sg
- 977 3131 mt
+ 977 3030 mt
(N-34) s
-gs 665 2529 962 637 MR c np
+gs 665 2428 962 738 MR c np
DA
c9
-240 0 712 3100 2 MP stroke
+240 0 712 2998 2 MP stroke
SO
gr
c9
+0 sg
+ 977 3131 mt
+(erste Fehler) s
+gs 665 2428 962 738 MR c np
+DA
+c2
+240 0 712 3100 2 MP stroke
+SO
+gr
+
+c2
end %%Color Dict
%!PS-Adobe-2.0 EPSF-1.2
%%Creator: MATLAB, The MathWorks, Inc. Version 8.1.0.604 (R2013a). Operating System: Linux 3.7.0-7-generic #15-Ubuntu SMP Sat Dec 15 16:34:25 UTC 2012 x86_64.
%%Title: ../doc/fig/1t05n05_2DLShape_hminmax.eps
-%%CreationDate: 04/13/2013 16:13:38
+%%CreationDate: 04/13/2013 16:29:51
%%DocumentNeededFonts: Helvetica
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%Extensions: CMYK
portraitMode 0150 5100 csm
294 173 4145 3293 MR c np
-79 dict begin %Colortable dictionary
+80 dict begin %Colortable dictionary
/c0 { 0.000000 0.000000 0.000000 sr} bdef
/c1 { 1.000000 1.000000 1.000000 sr} bdef
/c2 { 0.900000 0.000000 0.000000 sr} bdef
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
537 3184 mt
-(-6) s
- 624 3064 mt 642 3064 L
-4344 3064 mt 4325 3064 L
- 624 2982 mt 642 2982 L
-4344 2982 mt 4325 2982 L
+(-7) s
+ 624 3083 mt 642 3083 L
+4344 3083 mt 4325 3083 L
+ 624 3013 mt 642 3013 L
+4344 3013 mt 4325 3013 L
+ 624 2962 mt 642 2962 L
+4344 2962 mt 4325 2962 L
624 2924 mt 642 2924 L
4344 2924 mt 4325 2924 L
- 624 2879 mt 642 2879 L
-4344 2879 mt 4325 2879 L
- 624 2842 mt 642 2842 L
-4344 2842 mt 4325 2842 L
- 624 2811 mt 642 2811 L
-4344 2811 mt 4325 2811 L
- 624 2784 mt 642 2784 L
-4344 2784 mt 4325 2784 L
- 624 2760 mt 642 2760 L
-4344 2760 mt 4325 2760 L
- 624 2739 mt 642 2739 L
-4344 2739 mt 4325 2739 L
- 624 2739 mt 661 2739 L
-4344 2739 mt 4306 2739 L
+ 624 2892 mt 642 2892 L
+4344 2892 mt 4325 2892 L
+ 624 2865 mt 642 2865 L
+4344 2865 mt 4325 2865 L
+ 624 2841 mt 642 2841 L
+4344 2841 mt 4325 2841 L
+ 624 2821 mt 642 2821 L
+4344 2821 mt 4325 2821 L
+ 624 2803 mt 642 2803 L
+4344 2803 mt 4325 2803 L
+ 624 2803 mt 661 2803 L
+4344 2803 mt 4306 2803 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 2769 mt
+ 445 2833 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 2718 mt
+ 537 2782 mt
+(-6) s
+ 624 2681 mt 642 2681 L
+4344 2681 mt 4325 2681 L
+ 624 2611 mt 642 2611 L
+4344 2611 mt 4325 2611 L
+ 624 2560 mt 642 2560 L
+4344 2560 mt 4325 2560 L
+ 624 2522 mt 642 2522 L
+4344 2522 mt 4325 2522 L
+ 624 2490 mt 642 2490 L
+4344 2490 mt 4325 2490 L
+ 624 2463 mt 642 2463 L
+4344 2463 mt 4325 2463 L
+ 624 2439 mt 642 2439 L
+4344 2439 mt 4325 2439 L
+ 624 2419 mt 642 2419 L
+4344 2419 mt 4325 2419 L
+ 624 2401 mt 642 2401 L
+4344 2401 mt 4325 2401 L
+ 624 2401 mt 661 2401 L
+4344 2401 mt 4306 2401 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 445 2431 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 537 2380 mt
(-5) s
- 624 2598 mt 642 2598 L
-4344 2598 mt 4325 2598 L
- 624 2516 mt 642 2516 L
-4344 2516 mt 4325 2516 L
- 624 2458 mt 642 2458 L
-4344 2458 mt 4325 2458 L
- 624 2413 mt 642 2413 L
-4344 2413 mt 4325 2413 L
- 624 2376 mt 642 2376 L
-4344 2376 mt 4325 2376 L
- 624 2345 mt 642 2345 L
-4344 2345 mt 4325 2345 L
- 624 2318 mt 642 2318 L
-4344 2318 mt 4325 2318 L
- 624 2294 mt 642 2294 L
-4344 2294 mt 4325 2294 L
- 624 2273 mt 642 2273 L
-4344 2273 mt 4325 2273 L
- 624 2273 mt 661 2273 L
-4344 2273 mt 4306 2273 L
+ 624 2279 mt 642 2279 L
+4344 2279 mt 4325 2279 L
+ 624 2209 mt 642 2209 L
+4344 2209 mt 4325 2209 L
+ 624 2158 mt 642 2158 L
+4344 2158 mt 4325 2158 L
+ 624 2120 mt 642 2120 L
+4344 2120 mt 4325 2120 L
+ 624 2088 mt 642 2088 L
+4344 2088 mt 4325 2088 L
+ 624 2061 mt 642 2061 L
+4344 2061 mt 4325 2061 L
+ 624 2037 mt 642 2037 L
+4344 2037 mt 4325 2037 L
+ 624 2017 mt 642 2017 L
+4344 2017 mt 4325 2017 L
+ 624 1999 mt 642 1999 L
+4344 1999 mt 4325 1999 L
+ 624 1999 mt 661 1999 L
+4344 1999 mt 4306 1999 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 2303 mt
+ 445 2029 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 2252 mt
+ 537 1978 mt
(-4) s
- 624 2133 mt 642 2133 L
-4344 2133 mt 4325 2133 L
- 624 2051 mt 642 2051 L
-4344 2051 mt 4325 2051 L
- 624 1992 mt 642 1992 L
-4344 1992 mt 4325 1992 L
- 624 1947 mt 642 1947 L
-4344 1947 mt 4325 1947 L
- 624 1910 mt 642 1910 L
-4344 1910 mt 4325 1910 L
- 624 1879 mt 642 1879 L
-4344 1879 mt 4325 1879 L
- 624 1852 mt 642 1852 L
-4344 1852 mt 4325 1852 L
- 624 1828 mt 642 1828 L
-4344 1828 mt 4325 1828 L
+ 624 1877 mt 642 1877 L
+4344 1877 mt 4325 1877 L
624 1807 mt 642 1807 L
4344 1807 mt 4325 1807 L
- 624 1807 mt 661 1807 L
-4344 1807 mt 4306 1807 L
+ 624 1756 mt 642 1756 L
+4344 1756 mt 4325 1756 L
+ 624 1718 mt 642 1718 L
+4344 1718 mt 4325 1718 L
+ 624 1686 mt 642 1686 L
+4344 1686 mt 4325 1686 L
+ 624 1659 mt 642 1659 L
+4344 1659 mt 4325 1659 L
+ 624 1635 mt 642 1635 L
+4344 1635 mt 4325 1635 L
+ 624 1615 mt 642 1615 L
+4344 1615 mt 4325 1615 L
+ 624 1597 mt 642 1597 L
+4344 1597 mt 4325 1597 L
+ 624 1597 mt 661 1597 L
+4344 1597 mt 4306 1597 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 1837 mt
+ 445 1627 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 1786 mt
+ 537 1576 mt
(-3) s
- 624 1667 mt 642 1667 L
-4344 1667 mt 4325 1667 L
- 624 1585 mt 642 1585 L
-4344 1585 mt 4325 1585 L
- 624 1527 mt 642 1527 L
-4344 1527 mt 4325 1527 L
- 624 1482 mt 642 1482 L
-4344 1482 mt 4325 1482 L
- 624 1445 mt 642 1445 L
-4344 1445 mt 4325 1445 L
- 624 1413 mt 642 1413 L
-4344 1413 mt 4325 1413 L
- 624 1386 mt 642 1386 L
-4344 1386 mt 4325 1386 L
- 624 1363 mt 642 1363 L
-4344 1363 mt 4325 1363 L
- 624 1341 mt 642 1341 L
-4344 1341 mt 4325 1341 L
- 624 1341 mt 661 1341 L
-4344 1341 mt 4306 1341 L
+ 624 1475 mt 642 1475 L
+4344 1475 mt 4325 1475 L
+ 624 1405 mt 642 1405 L
+4344 1405 mt 4325 1405 L
+ 624 1354 mt 642 1354 L
+4344 1354 mt 4325 1354 L
+ 624 1316 mt 642 1316 L
+4344 1316 mt 4325 1316 L
+ 624 1284 mt 642 1284 L
+4344 1284 mt 4325 1284 L
+ 624 1257 mt 642 1257 L
+4344 1257 mt 4325 1257 L
+ 624 1233 mt 642 1233 L
+4344 1233 mt 4325 1233 L
+ 624 1213 mt 642 1213 L
+4344 1213 mt 4325 1213 L
+ 624 1195 mt 642 1195 L
+4344 1195 mt 4325 1195 L
+ 624 1195 mt 661 1195 L
+4344 1195 mt 4306 1195 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 1371 mt
+ 445 1225 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 1320 mt
+ 537 1174 mt
(-2) s
- 624 1201 mt 642 1201 L
-4344 1201 mt 4325 1201 L
- 624 1119 mt 642 1119 L
-4344 1119 mt 4325 1119 L
- 624 1061 mt 642 1061 L
-4344 1061 mt 4325 1061 L
- 624 1016 mt 642 1016 L
-4344 1016 mt 4325 1016 L
- 624 979 mt 642 979 L
-4344 979 mt 4325 979 L
- 624 948 mt 642 948 L
-4344 948 mt 4325 948 L
- 624 921 mt 642 921 L
-4344 921 mt 4325 921 L
- 624 897 mt 642 897 L
-4344 897 mt 4325 897 L
- 624 876 mt 642 876 L
-4344 876 mt 4325 876 L
- 624 876 mt 661 876 L
-4344 876 mt 4306 876 L
+ 624 1073 mt 642 1073 L
+4344 1073 mt 4325 1073 L
+ 624 1003 mt 642 1003 L
+4344 1003 mt 4325 1003 L
+ 624 952 mt 642 952 L
+4344 952 mt 4325 952 L
+ 624 914 mt 642 914 L
+4344 914 mt 4325 914 L
+ 624 882 mt 642 882 L
+4344 882 mt 4325 882 L
+ 624 855 mt 642 855 L
+4344 855 mt 4325 855 L
+ 624 831 mt 642 831 L
+4344 831 mt 4325 831 L
+ 624 811 mt 642 811 L
+4344 811 mt 4325 811 L
+ 624 793 mt 642 793 L
+4344 793 mt 4325 793 L
+ 624 793 mt 661 793 L
+4344 793 mt 4306 793 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 906 mt
+ 445 823 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 855 mt
+ 537 772 mt
(-1) s
- 624 735 mt 642 735 L
-4344 735 mt 4325 735 L
- 624 653 mt 642 653 L
-4344 653 mt 4325 653 L
- 624 595 mt 642 595 L
-4344 595 mt 4325 595 L
+ 624 671 mt 642 671 L
+4344 671 mt 4325 671 L
+ 624 601 mt 642 601 L
+4344 601 mt 4325 601 L
624 550 mt 642 550 L
4344 550 mt 4325 550 L
- 624 513 mt 642 513 L
-4344 513 mt 4325 513 L
- 624 482 mt 642 482 L
-4344 482 mt 4325 482 L
- 624 455 mt 642 455 L
-4344 455 mt 4325 455 L
- 624 431 mt 642 431 L
-4344 431 mt 4325 431 L
- 624 410 mt 642 410 L
-4344 410 mt 4325 410 L
- 624 410 mt 661 410 L
-4344 410 mt 4306 410 L
+ 624 512 mt 642 512 L
+4344 512 mt 4325 512 L
+ 624 480 mt 642 480 L
+4344 480 mt 4325 480 L
+ 624 453 mt 642 453 L
+4344 453 mt 4325 453 L
+ 624 429 mt 642 429 L
+4344 429 mt 4325 429 L
+ 624 409 mt 642 409 L
+4344 409 mt 4325 409 L
+ 624 391 mt 642 391 L
+4344 391 mt 4325 391 L
+ 624 391 mt 661 391 L
+4344 391 mt 4306 391 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 440 mt
+ 445 421 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 389 mt
+ 537 370 mt
(0) s
624 270 mt 642 270 L
4344 270 mt 4325 270 L
gs 624 270 3721 2936 MR c np
/c8 { 0.000000 0.300000 0.300000 sr} bdef
c8
-100 141 91 140 92 140 84 140 80 0 70 140 73 141 76 0
-71 -141 74 141 65 140 67 140 66 140 77 0 62 141 74 140
-95 0 95 140 99 0 133 140 147 140 141 141 190 140 254 140
-396 140 1067 410 26 MP stroke
-gs 1016 359 2875 2627 MR c np
- 25 25 1067 410 FO
- 25 25 1463 550 FO
- 25 25 1717 690 FO
- 25 25 1907 830 FO
- 25 25 2048 971 FO
- 25 25 2195 1111 FO
- 25 25 2328 1251 FO
- 25 25 2427 1251 FO
- 25 25 2522 1391 FO
- 25 25 2617 1391 FO
- 25 25 2691 1531 FO
- 25 25 2753 1672 FO
- 25 25 2830 1672 FO
- 25 25 2896 1812 FO
- 25 25 2963 1952 FO
- 25 25 3028 2092 FO
- 25 25 3102 2233 FO
- 25 25 3173 2092 FO
- 25 25 3249 2092 FO
- 25 25 3322 2233 FO
- 25 25 3392 2373 FO
- 25 25 3472 2373 FO
- 25 25 3556 2513 FO
- 25 25 3648 2653 FO
- 25 25 3739 2793 FO
- 25 25 3839 2934 FO
+104 121 41 121 38 121 76 121 100 121 91 121 92 121 84 121
+80 0 70 121 73 121 76 0 71 -121 74 121 65 121 67 121
+66 121 77 0 62 121 74 121 95 0 95 121 99 0 133 121
+147 121 141 121 190 121 254 121 396 121 1067 391 30 MP stroke
+gs 1016 340 3134 2765 MR c np
+ 25 25 1067 391 FO
+ 25 25 1463 512 FO
+ 25 25 1717 633 FO
+ 25 25 1907 754 FO
+ 25 25 2048 875 FO
+ 25 25 2195 996 FO
+ 25 25 2328 1117 FO
+ 25 25 2427 1117 FO
+ 25 25 2522 1238 FO
+ 25 25 2617 1238 FO
+ 25 25 2691 1359 FO
+ 25 25 2753 1480 FO
+ 25 25 2830 1480 FO
+ 25 25 2896 1601 FO
+ 25 25 2963 1722 FO
+ 25 25 3028 1843 FO
+ 25 25 3102 1964 FO
+ 25 25 3173 1843 FO
+ 25 25 3249 1843 FO
+ 25 25 3322 1964 FO
+ 25 25 3392 2085 FO
+ 25 25 3472 2085 FO
+ 25 25 3556 2206 FO
+ 25 25 3648 2327 FO
+ 25 25 3739 2448 FO
+ 25 25 3839 2569 FO
+ 25 25 3915 2690 FO
+ 25 25 3953 2811 FO
+ 25 25 3994 2932 FO
+ 25 25 4098 3053 FO
gr
-100 140 91 140 92 140 84 141 80 140 70 140 73 0 76 140
-71 0 74 141 65 140 67 0 66 140 77 0 62 140 74 0
-95 0 95 140 99 0 133 0 147 141 141 0 190 140 254 140
-396 140 1067 410 26 MP stroke
-gs 1016 359 2875 2346 MR c np
+104 0 41 0 38 0 76 121 100 121 91 121 92 121 84 121
+80 121 70 121 73 0 76 121 71 0 74 121 65 121 67 0
+66 121 77 0 62 121 74 0 95 0 95 121 99 0 133 0
+147 121 141 0 190 121 254 121 396 121 1067 391 30 MP stroke
+gs 1016 340 3134 2160 MR c np
0 j
-29 50 -58 0 29 -50 1067 443 4 MP
+29 50 -58 0 29 -50 1067 424 4 MP
+DP
+29 50 -58 0 29 -50 1463 545 4 MP
+DP
+29 50 -58 0 29 -50 1717 666 4 MP
+DP
+29 50 -58 0 29 -50 1907 787 4 MP
DP
-29 50 -58 0 29 -50 1463 583 4 MP
+29 50 -58 0 29 -50 2048 787 4 MP
DP
-29 50 -58 0 29 -50 1717 723 4 MP
+29 50 -58 0 29 -50 2195 908 4 MP
DP
-29 50 -58 0 29 -50 1907 863 4 MP
+29 50 -58 0 29 -50 2328 908 4 MP
DP
-29 50 -58 0 29 -50 2048 863 4 MP
+29 50 -58 0 29 -50 2427 908 4 MP
DP
-29 50 -58 0 29 -50 2195 1004 4 MP
+29 50 -58 0 29 -50 2522 1029 4 MP
DP
-29 50 -58 0 29 -50 2328 1004 4 MP
+29 50 -58 0 29 -50 2617 1029 4 MP
DP
-29 50 -58 0 29 -50 2427 1004 4 MP
+29 50 -58 0 29 -50 2691 1029 4 MP
DP
-29 50 -58 0 29 -50 2522 1144 4 MP
+29 50 -58 0 29 -50 2753 1150 4 MP
DP
-29 50 -58 0 29 -50 2617 1144 4 MP
+29 50 -58 0 29 -50 2830 1150 4 MP
DP
-29 50 -58 0 29 -50 2691 1144 4 MP
+29 50 -58 0 29 -50 2896 1271 4 MP
DP
-29 50 -58 0 29 -50 2753 1284 4 MP
+29 50 -58 0 29 -50 2963 1271 4 MP
DP
-29 50 -58 0 29 -50 2830 1284 4 MP
+29 50 -58 0 29 -50 3028 1392 4 MP
DP
-29 50 -58 0 29 -50 2896 1424 4 MP
+29 50 -58 0 29 -50 3102 1513 4 MP
DP
-29 50 -58 0 29 -50 2963 1424 4 MP
+29 50 -58 0 29 -50 3173 1513 4 MP
DP
-29 50 -58 0 29 -50 3028 1564 4 MP
+29 50 -58 0 29 -50 3249 1634 4 MP
DP
-29 50 -58 0 29 -50 3102 1705 4 MP
+29 50 -58 0 29 -50 3322 1634 4 MP
DP
-29 50 -58 0 29 -50 3173 1705 4 MP
+29 50 -58 0 29 -50 3392 1755 4 MP
DP
-29 50 -58 0 29 -50 3249 1845 4 MP
+29 50 -58 0 29 -50 3472 1876 4 MP
DP
-29 50 -58 0 29 -50 3322 1845 4 MP
+29 50 -58 0 29 -50 3556 1997 4 MP
DP
-29 50 -58 0 29 -50 3392 1985 4 MP
+29 50 -58 0 29 -50 3648 2118 4 MP
DP
-29 50 -58 0 29 -50 3472 2125 4 MP
+29 50 -58 0 29 -50 3739 2239 4 MP
DP
-29 50 -58 0 29 -50 3556 2266 4 MP
+29 50 -58 0 29 -50 3839 2360 4 MP
DP
-29 50 -58 0 29 -50 3648 2406 4 MP
+29 50 -58 0 29 -50 3915 2481 4 MP
DP
-29 50 -58 0 29 -50 3739 2546 4 MP
+29 50 -58 0 29 -50 3953 2481 4 MP
DP
-29 50 -58 0 29 -50 3839 2686 4 MP
+29 50 -58 0 29 -50 3994 2481 4 MP
+DP
+29 50 -58 0 29 -50 4098 2481 4 MP
DP
gr
-100 141 91 140 92 140 84 140 80 140 70 141 73 0 76 0
-71 -141 74 141 65 140 67 140 66 140 77 0 62 141 74 140
-95 0 95 140 99 0 133 140 147 140 141 141 190 140 254 140
-396 140 1067 410 26 MP stroke
-gs 1016 359 2875 2627 MR c np
-1050 393 mt 1084 427 L
-1084 393 mt 1050 427 L
-1446 533 mt 1480 567 L
-1480 533 mt 1446 567 L
-1700 673 mt 1734 707 L
-1734 673 mt 1700 707 L
-1890 813 mt 1924 847 L
-1924 813 mt 1890 847 L
-2031 954 mt 2065 988 L
-2065 954 mt 2031 988 L
-2178 1094 mt 2212 1128 L
-2212 1094 mt 2178 1128 L
-2311 1234 mt 2345 1268 L
-2345 1234 mt 2311 1268 L
-2410 1234 mt 2444 1268 L
-2444 1234 mt 2410 1268 L
-2505 1374 mt 2539 1408 L
-2539 1374 mt 2505 1408 L
-2600 1374 mt 2634 1408 L
-2634 1374 mt 2600 1408 L
-2674 1514 mt 2708 1548 L
-2708 1514 mt 2674 1548 L
-2736 1655 mt 2770 1689 L
-2770 1655 mt 2736 1689 L
-2813 1655 mt 2847 1689 L
-2847 1655 mt 2813 1689 L
-2879 1795 mt 2913 1829 L
-2913 1795 mt 2879 1829 L
-2946 1935 mt 2980 1969 L
-2980 1935 mt 2946 1969 L
-3011 2075 mt 3045 2109 L
-3045 2075 mt 3011 2109 L
-3085 2216 mt 3119 2250 L
-3119 2216 mt 3085 2250 L
-3156 2075 mt 3190 2109 L
-3190 2075 mt 3156 2109 L
-3232 2075 mt 3266 2109 L
-3266 2075 mt 3232 2109 L
-3305 2075 mt 3339 2109 L
-3339 2075 mt 3305 2109 L
-3375 2216 mt 3409 2250 L
-3409 2216 mt 3375 2250 L
-3455 2356 mt 3489 2390 L
-3489 2356 mt 3455 2390 L
-3539 2496 mt 3573 2530 L
-3573 2496 mt 3539 2530 L
-3631 2636 mt 3665 2670 L
-3665 2636 mt 3631 2670 L
-3722 2776 mt 3756 2810 L
-3756 2776 mt 3722 2810 L
-3822 2917 mt 3856 2951 L
-3856 2917 mt 3822 2951 L
+104 0 41 121 38 0 76 121 100 121 91 121 92 121 84 121
+80 121 70 121 73 0 76 0 71 -121 74 121 65 121 67 121
+66 121 77 0 62 121 74 121 95 0 95 121 99 0 133 121
+147 121 141 121 190 121 254 121 396 121 1067 391 30 MP stroke
+gs 1016 340 3134 2523 MR c np
+1050 374 mt 1084 408 L
+1084 374 mt 1050 408 L
+1446 495 mt 1480 529 L
+1480 495 mt 1446 529 L
+1700 616 mt 1734 650 L
+1734 616 mt 1700 650 L
+1890 737 mt 1924 771 L
+1924 737 mt 1890 771 L
+2031 858 mt 2065 892 L
+2065 858 mt 2031 892 L
+2178 979 mt 2212 1013 L
+2212 979 mt 2178 1013 L
+2311 1100 mt 2345 1134 L
+2345 1100 mt 2311 1134 L
+2410 1100 mt 2444 1134 L
+2444 1100 mt 2410 1134 L
+2505 1221 mt 2539 1255 L
+2539 1221 mt 2505 1255 L
+2600 1221 mt 2634 1255 L
+2634 1221 mt 2600 1255 L
+2674 1342 mt 2708 1376 L
+2708 1342 mt 2674 1376 L
+2736 1463 mt 2770 1497 L
+2770 1463 mt 2736 1497 L
+2813 1463 mt 2847 1497 L
+2847 1463 mt 2813 1497 L
+2879 1584 mt 2913 1618 L
+2913 1584 mt 2879 1618 L
+2946 1705 mt 2980 1739 L
+2980 1705 mt 2946 1739 L
+3011 1826 mt 3045 1860 L
+3045 1826 mt 3011 1860 L
+3085 1947 mt 3119 1981 L
+3119 1947 mt 3085 1981 L
+3156 1826 mt 3190 1860 L
+3190 1826 mt 3156 1860 L
+3232 1826 mt 3266 1860 L
+3266 1826 mt 3232 1860 L
+3305 1826 mt 3339 1860 L
+3339 1826 mt 3305 1860 L
+3375 1947 mt 3409 1981 L
+3409 1947 mt 3375 1981 L
+3455 2068 mt 3489 2102 L
+3489 2068 mt 3455 2102 L
+3539 2189 mt 3573 2223 L
+3573 2189 mt 3539 2223 L
+3631 2310 mt 3665 2344 L
+3665 2310 mt 3631 2344 L
+3722 2431 mt 3756 2465 L
+3756 2431 mt 3722 2465 L
+3822 2552 mt 3856 2586 L
+3856 2552 mt 3822 2586 L
+3898 2673 mt 3932 2707 L
+3932 2673 mt 3898 2707 L
+3936 2673 mt 3970 2707 L
+3970 2673 mt 3936 2707 L
+3977 2794 mt 4011 2828 L
+4011 2794 mt 3977 2828 L
+4081 2794 mt 4115 2828 L
+4115 2794 mt 4081 2828 L
gr
+DA
+c2
+0 -2797 3879 3142 2 MP stroke
gr
-c8
+c2
+DA
0 sg
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
( ) s
4333 300 mt
( ) s
+SO
1 sg
-0 333 1523 0 0 -333 665 3165 4 MP
+0 434 1523 0 0 -434 665 3165 4 MP
PP
--1523 0 0 333 1523 0 0 -333 665 3165 5 MP stroke
+-1523 0 0 434 1523 0 0 -434 665 3165 5 MP stroke
2.77778 w
DO
SO
4.16667 w
0 sg
665 3165 mt 2188 3165 L
- 665 3165 mt 665 2832 L
-1008 2927 mt
+ 665 3165 mt 665 2731 L
+1008 2826 mt
(min hmin/max hmax 1t05n05 A) s
-gs 665 2832 1524 334 MR c np
+gs 665 2731 1524 435 MR c np
c8
-264 0 717 2896 2 MP stroke
-gs 798 2845 103 103 MR c np
- 25 25 849 2896 FO
+264 0 717 2795 2 MP stroke
+gs 798 2744 103 103 MR c np
+ 25 25 849 2795 FO
gr
gr
c8
0 sg
-1008 3029 mt
+1008 2928 mt
(min hmax/max hmax 1t05n05 A) s
-gs 665 2832 1524 334 MR c np
+gs 665 2731 1524 435 MR c np
c8
-264 0 717 2998 2 MP stroke
-gs 798 2947 103 103 MR c np
+264 0 717 2897 2 MP stroke
+gs 798 2846 103 103 MR c np
0 j
-29 50 -58 0 29 -50 849 3031 4 MP
+29 50 -58 0 29 -50 849 2930 4 MP
DP
gr
c8
0 sg
-1008 3131 mt
+1008 3029 mt
(min hmin/hmax 1t05n05 A) s
-gs 665 2832 1524 334 MR c np
+gs 665 2731 1524 435 MR c np
c8
-264 0 717 3100 2 MP stroke
-gs 798 3049 103 103 MR c np
- 832 3083 mt 866 3117 L
- 866 3083 mt 832 3117 L
+264 0 717 2998 2 MP stroke
+gs 798 2947 103 103 MR c np
+ 832 2981 mt 866 3015 L
+ 866 2981 mt 832 3015 L
gr
gr
c8
+0 sg
+1008 3131 mt
+(erste Fehler) s
+gs 665 2731 1524 435 MR c np
+DA
+c2
+264 0 717 3100 2 MP stroke
+SO
+gr
+
+c2
end %%Color Dict
%!PS-Adobe-2.0 EPSF-1.2
%%Creator: MATLAB, The MathWorks, Inc. Version 8.1.0.604 (R2013a). Operating System: Linux 3.7.0-7-generic #15-Ubuntu SMP Sat Dec 15 16:34:25 UTC 2012 x86_64.
%%Title: ../doc/fig/1t05n05_2DLShape_time.eps
-%%CreationDate: 04/13/2013 16:13:39
+%%CreationDate: 04/13/2013 16:29:52
%%DocumentNeededFonts: Helvetica
%%DocumentProcessColors: Cyan Magenta Yellow Black
%%Extensions: CMYK
1 sg
0 0 4801 3602 PR
4.16667 w
-0 2935 3720 0 0 -2935 624 3205 4 MP
+0 2935 3721 0 0 -2935 623 3205 4 MP
PP
--3720 0 0 2935 3720 0 0 -2935 624 3205 5 MP stroke
+-3721 0 0 2935 3721 0 0 -2935 623 3205 5 MP stroke
2.77778 w
DO
SO
4.16667 w
0 sg
- 624 3205 mt 4344 3205 L
- 624 270 mt 4344 270 L
- 624 3205 mt 624 270 L
+ 623 3205 mt 4344 3205 L
+ 623 270 mt 4344 270 L
+ 623 3205 mt 623 270 L
4344 3205 mt 4344 270 L
- 624 3205 mt 4344 3205 L
- 624 3205 mt 624 270 L
- 624 3205 mt 624 3186 L
- 624 270 mt 624 288 L
- 624 3205 mt 624 3167 L
- 624 270 mt 624 307 L
+ 623 3205 mt 4344 3205 L
+ 623 3205 mt 623 270 L
+ 623 3205 mt 623 3186 L
+ 623 270 mt 623 288 L
+ 623 3205 mt 623 3167 L
+ 623 270 mt 623 307 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 563 3331 mt
+ 562 3331 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 655 3280 mt
+ 654 3280 mt
(0) s
903 3205 mt 903 3186 L
903 270 mt 903 288 L
4375 3280 mt
(4) s
- 624 3205 mt 642 3205 L
+ 623 3205 mt 642 3205 L
4344 3205 mt 4325 3205 L
- 624 3205 mt 661 3205 L
+ 623 3205 mt 661 3205 L
4344 3205 mt 4306 3205 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
537 3184 mt
(-2) s
- 624 3057 mt 642 3057 L
-4344 3057 mt 4325 3057 L
- 624 2971 mt 642 2971 L
-4344 2971 mt 4325 2971 L
- 624 2910 mt 642 2910 L
-4344 2910 mt 4325 2910 L
- 624 2863 mt 642 2863 L
-4344 2863 mt 4325 2863 L
- 624 2824 mt 642 2824 L
-4344 2824 mt 4325 2824 L
- 624 2791 mt 642 2791 L
-4344 2791 mt 4325 2791 L
- 624 2763 mt 642 2763 L
-4344 2763 mt 4325 2763 L
- 624 2738 mt 642 2738 L
-4344 2738 mt 4325 2738 L
- 624 2715 mt 642 2715 L
-4344 2715 mt 4325 2715 L
- 624 2715 mt 661 2715 L
-4344 2715 mt 4306 2715 L
+ 623 3078 mt 642 3078 L
+4344 3078 mt 4325 3078 L
+ 623 3004 mt 642 3004 L
+4344 3004 mt 4325 3004 L
+ 623 2952 mt 642 2952 L
+4344 2952 mt 4325 2952 L
+ 623 2911 mt 642 2911 L
+4344 2911 mt 4325 2911 L
+ 623 2878 mt 642 2878 L
+4344 2878 mt 4325 2878 L
+ 623 2850 mt 642 2850 L
+4344 2850 mt 4325 2850 L
+ 623 2826 mt 642 2826 L
+4344 2826 mt 4325 2826 L
+ 623 2804 mt 642 2804 L
+4344 2804 mt 4325 2804 L
+ 623 2785 mt 642 2785 L
+4344 2785 mt 4325 2785 L
+ 623 2785 mt 661 2785 L
+4344 2785 mt 4306 2785 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 2745 mt
+ 445 2815 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 2694 mt
+ 537 2764 mt
(-1) s
- 624 2568 mt 642 2568 L
-4344 2568 mt 4325 2568 L
- 624 2482 mt 642 2482 L
-4344 2482 mt 4325 2482 L
- 624 2421 mt 642 2421 L
-4344 2421 mt 4325 2421 L
- 624 2373 mt 642 2373 L
-4344 2373 mt 4325 2373 L
- 624 2335 mt 642 2335 L
-4344 2335 mt 4325 2335 L
- 624 2302 mt 642 2302 L
-4344 2302 mt 4325 2302 L
- 624 2274 mt 642 2274 L
-4344 2274 mt 4325 2274 L
- 624 2249 mt 642 2249 L
-4344 2249 mt 4325 2249 L
- 624 2226 mt 642 2226 L
-4344 2226 mt 4325 2226 L
- 624 2226 mt 661 2226 L
-4344 2226 mt 4306 2226 L
+ 623 2659 mt 642 2659 L
+4344 2659 mt 4325 2659 L
+ 623 2585 mt 642 2585 L
+4344 2585 mt 4325 2585 L
+ 623 2533 mt 642 2533 L
+4344 2533 mt 4325 2533 L
+ 623 2492 mt 642 2492 L
+4344 2492 mt 4325 2492 L
+ 623 2459 mt 642 2459 L
+4344 2459 mt 4325 2459 L
+ 623 2431 mt 642 2431 L
+4344 2431 mt 4325 2431 L
+ 623 2407 mt 642 2407 L
+4344 2407 mt 4325 2407 L
+ 623 2385 mt 642 2385 L
+4344 2385 mt 4325 2385 L
+ 623 2366 mt 642 2366 L
+4344 2366 mt 4325 2366 L
+ 623 2366 mt 661 2366 L
+4344 2366 mt 4306 2366 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 2256 mt
+ 445 2396 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 2205 mt
+ 537 2345 mt
(0) s
- 624 2079 mt 642 2079 L
-4344 2079 mt 4325 2079 L
- 624 1993 mt 642 1993 L
-4344 1993 mt 4325 1993 L
- 624 1932 mt 642 1932 L
-4344 1932 mt 4325 1932 L
- 624 1884 mt 642 1884 L
-4344 1884 mt 4325 1884 L
- 624 1846 mt 642 1846 L
-4344 1846 mt 4325 1846 L
- 624 1813 mt 642 1813 L
-4344 1813 mt 4325 1813 L
- 624 1784 mt 642 1784 L
-4344 1784 mt 4325 1784 L
- 624 1759 mt 642 1759 L
-4344 1759 mt 4325 1759 L
- 624 1737 mt 642 1737 L
-4344 1737 mt 4325 1737 L
- 624 1737 mt 661 1737 L
-4344 1737 mt 4306 1737 L
+ 623 2240 mt 642 2240 L
+4344 2240 mt 4325 2240 L
+ 623 2166 mt 642 2166 L
+4344 2166 mt 4325 2166 L
+ 623 2113 mt 642 2113 L
+4344 2113 mt 4325 2113 L
+ 623 2073 mt 642 2073 L
+4344 2073 mt 4325 2073 L
+ 623 2040 mt 642 2040 L
+4344 2040 mt 4325 2040 L
+ 623 2012 mt 642 2012 L
+4344 2012 mt 4325 2012 L
+ 623 1987 mt 642 1987 L
+4344 1987 mt 4325 1987 L
+ 623 1966 mt 642 1966 L
+4344 1966 mt 4325 1966 L
+ 623 1947 mt 642 1947 L
+4344 1947 mt 4325 1947 L
+ 623 1947 mt 661 1947 L
+4344 1947 mt 4306 1947 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 1767 mt
+ 445 1977 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 1716 mt
+ 537 1926 mt
(1) s
- 624 1590 mt 642 1590 L
-4344 1590 mt 4325 1590 L
- 624 1504 mt 642 1504 L
-4344 1504 mt 4325 1504 L
- 624 1442 mt 642 1442 L
-4344 1442 mt 4325 1442 L
- 624 1395 mt 642 1395 L
-4344 1395 mt 4325 1395 L
- 624 1356 mt 642 1356 L
-4344 1356 mt 4325 1356 L
- 624 1324 mt 642 1324 L
-4344 1324 mt 4325 1324 L
- 624 1295 mt 642 1295 L
-4344 1295 mt 4325 1295 L
- 624 1270 mt 642 1270 L
-4344 1270 mt 4325 1270 L
- 624 1248 mt 642 1248 L
-4344 1248 mt 4325 1248 L
- 624 1248 mt 661 1248 L
-4344 1248 mt 4306 1248 L
+ 623 1820 mt 642 1820 L
+4344 1820 mt 4325 1820 L
+ 623 1747 mt 642 1747 L
+4344 1747 mt 4325 1747 L
+ 623 1694 mt 642 1694 L
+4344 1694 mt 4325 1694 L
+ 623 1654 mt 642 1654 L
+4344 1654 mt 4325 1654 L
+ 623 1620 mt 642 1620 L
+4344 1620 mt 4325 1620 L
+ 623 1592 mt 642 1592 L
+4344 1592 mt 4325 1592 L
+ 623 1568 mt 642 1568 L
+4344 1568 mt 4325 1568 L
+ 623 1547 mt 642 1547 L
+4344 1547 mt 4325 1547 L
+ 623 1527 mt 642 1527 L
+4344 1527 mt 4325 1527 L
+ 623 1527 mt 661 1527 L
+4344 1527 mt 4306 1527 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 1278 mt
+ 445 1557 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 1227 mt
+ 537 1506 mt
(2) s
- 624 1101 mt 642 1101 L
-4344 1101 mt 4325 1101 L
- 624 1014 mt 642 1014 L
-4344 1014 mt 4325 1014 L
- 624 953 mt 642 953 L
-4344 953 mt 4325 953 L
- 624 906 mt 642 906 L
-4344 906 mt 4325 906 L
- 624 867 mt 642 867 L
-4344 867 mt 4325 867 L
- 624 834 mt 642 834 L
-4344 834 mt 4325 834 L
- 624 806 mt 642 806 L
-4344 806 mt 4325 806 L
- 624 781 mt 642 781 L
-4344 781 mt 4325 781 L
- 624 759 mt 642 759 L
-4344 759 mt 4325 759 L
- 624 759 mt 661 759 L
-4344 759 mt 4306 759 L
+ 623 1401 mt 642 1401 L
+4344 1401 mt 4325 1401 L
+ 623 1327 mt 642 1327 L
+4344 1327 mt 4325 1327 L
+ 623 1275 mt 642 1275 L
+4344 1275 mt 4325 1275 L
+ 623 1234 mt 642 1234 L
+4344 1234 mt 4325 1234 L
+ 623 1201 mt 642 1201 L
+4344 1201 mt 4325 1201 L
+ 623 1173 mt 642 1173 L
+4344 1173 mt 4325 1173 L
+ 623 1149 mt 642 1149 L
+4344 1149 mt 4325 1149 L
+ 623 1127 mt 642 1127 L
+4344 1127 mt 4325 1127 L
+ 623 1108 mt 642 1108 L
+4344 1108 mt 4325 1108 L
+ 623 1108 mt 661 1108 L
+4344 1108 mt 4306 1108 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
- 445 789 mt
+ 445 1138 mt
(10) s
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
- 537 738 mt
+ 537 1087 mt
(3) s
- 624 611 mt 642 611 L
-4344 611 mt 4325 611 L
- 624 525 mt 642 525 L
-4344 525 mt 4325 525 L
- 624 464 mt 642 464 L
-4344 464 mt 4325 464 L
- 624 417 mt 642 417 L
-4344 417 mt 4325 417 L
- 624 378 mt 642 378 L
-4344 378 mt 4325 378 L
- 624 345 mt 642 345 L
-4344 345 mt 4325 345 L
- 624 317 mt 642 317 L
-4344 317 mt 4325 317 L
- 624 292 mt 642 292 L
-4344 292 mt 4325 292 L
- 624 270 mt 642 270 L
+ 623 982 mt 642 982 L
+4344 982 mt 4325 982 L
+ 623 908 mt 642 908 L
+4344 908 mt 4325 908 L
+ 623 856 mt 642 856 L
+4344 856 mt 4325 856 L
+ 623 815 mt 642 815 L
+4344 815 mt 4325 815 L
+ 623 782 mt 642 782 L
+4344 782 mt 4325 782 L
+ 623 754 mt 642 754 L
+4344 754 mt 4325 754 L
+ 623 729 mt 642 729 L
+4344 729 mt 4325 729 L
+ 623 708 mt 642 708 L
+4344 708 mt 4325 708 L
+ 623 689 mt 642 689 L
+4344 689 mt 4325 689 L
+ 623 689 mt 661 689 L
+4344 689 mt 4306 689 L
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 83.3333 FMSR
+
+ 445 719 mt
+(10) s
+%%IncludeResource: font Helvetica
+/Helvetica /ISOLatin1Encoding 55.5556 FMSR
+
+ 537 668 mt
+(4) s
+ 623 563 mt 642 563 L
+4344 563 mt 4325 563 L
+ 623 489 mt 642 489 L
+4344 489 mt 4325 489 L
+ 623 436 mt 642 436 L
+4344 436 mt 4325 436 L
+ 623 396 mt 642 396 L
+4344 396 mt 4325 396 L
+ 623 363 mt 642 363 L
+4344 363 mt 4325 363 L
+ 623 334 mt 642 334 L
+4344 334 mt 4325 334 L
+ 623 310 mt 642 310 L
+4344 310 mt 4325 310 L
+ 623 289 mt 642 289 L
+4344 289 mt 4325 289 L
+ 623 270 mt 642 270 L
4344 270 mt 4325 270 L
- 624 270 mt 661 270 L
+ 623 270 mt 661 270 L
4344 270 mt 4306 270 L
%%IncludeResource: font Helvetica
/Helvetica /ISOLatin1Encoding 83.3333 FMSR
/Helvetica /ISOLatin1Encoding 55.5556 FMSR
537 249 mt
-(4) s
- 624 3205 mt 4344 3205 L
- 624 270 mt 4344 270 L
- 624 3205 mt 624 270 L
+(5) s
+ 623 3205 mt 4344 3205 L
+ 623 270 mt 4344 270 L
+ 623 3205 mt 623 270 L
4344 3205 mt 4344 270 L
-gs 624 270 3721 2936 MR c np
+gs 624 269 3721 2937 MR c np
/c8 { 0.000000 0.300000 0.300000 sr} bdef
c8
-100 -155 91 -144 92 -143 84 -124 80 -127 70 -114 73 -140 76 -134
-71 -141 74 -120 65 -46 67 -73 66 -68 77 -102 62 -31 74 -84
-95 -123 95 -70 99 -11 133 -134 147 -177 141 369 190 -593 254 18
-396 456 1067 2653 26 MP stroke
-gs 1016 591 2875 2588 MR c np
- 25 25 1067 2653 FO
- 25 25 1463 3109 FO
- 25 25 1717 3127 FO
- 25 25 1907 2534 FO
- 25 25 2048 2903 FO
- 25 25 2195 2726 FO
- 25 25 2328 2592 FO
- 25 25 2427 2581 FO
- 25 25 2522 2511 FO
- 25 25 2617 2388 FO
- 25 25 2691 2304 FO
- 25 25 2753 2273 FO
- 25 25 2830 2171 FO
- 25 25 2896 2103 FO
- 25 25 2963 2030 FO
- 25 25 3028 1984 FO
- 25 25 3102 1864 FO
- 25 25 3173 1723 FO
- 25 25 3249 1589 FO
- 25 25 3322 1449 FO
- 25 25 3392 1335 FO
- 25 25 3472 1208 FO
- 25 25 3556 1084 FO
- 25 25 3648 941 FO
- 25 25 3739 797 FO
- 25 25 3839 642 FO
+104 -144 41 -67 38 -40 76 -106 100 -133 91 -123 92 -123 84 -106
+80 -109 70 -98 73 -120 76 -115 71 -121 74 -102 65 -39 67 -63
+66 -59 77 -87 62 -27 74 -71 95 -106 95 -60 99 -9 133 -116
+147 -151 141 316 190 -508 254 15 396 392 1067 2731 30 MP stroke
+gs 1016 600 3134 2590 MR c np
+ 25 25 1067 2731 FO
+ 25 25 1463 3123 FO
+ 25 25 1717 3138 FO
+ 25 25 1907 2630 FO
+ 25 25 2048 2946 FO
+ 25 25 2195 2795 FO
+ 25 25 2328 2679 FO
+ 25 25 2427 2670 FO
+ 25 25 2522 2610 FO
+ 25 25 2617 2504 FO
+ 25 25 2691 2433 FO
+ 25 25 2753 2406 FO
+ 25 25 2830 2319 FO
+ 25 25 2896 2260 FO
+ 25 25 2963 2197 FO
+ 25 25 3028 2158 FO
+ 25 25 3102 2056 FO
+ 25 25 3173 1935 FO
+ 25 25 3249 1820 FO
+ 25 25 3322 1700 FO
+ 25 25 3392 1602 FO
+ 25 25 3472 1493 FO
+ 25 25 3556 1387 FO
+ 25 25 3648 1264 FO
+ 25 25 3739 1141 FO
+ 25 25 3839 1008 FO
+ 25 25 3915 902 FO
+ 25 25 3953 862 FO
+ 25 25 3994 795 FO
+ 25 25 4098 651 FO
gr
gr
90 rotate
612 3236 mt
( ) s
-4333 300 mt
+4333 299 mt
( ) s
1 sg
-0 130 894 0 0 -130 665 442 4 MP
+0 130 894 0 0 -130 665 441 4 MP
PP
--894 0 0 130 894 0 0 -130 665 442 5 MP stroke
+-894 0 0 130 894 0 0 -130 665 441 5 MP stroke
2.77778 w
DO
SO
4.16667 w
0 sg
- 665 442 mt 1559 442 L
- 665 442 mt 665 312 L
- 980 408 mt
+ 665 441 mt 1559 441 L
+ 665 441 mt 665 311 L
+ 980 407 mt
(Zeit 1t05n05 A) s
-gs 665 312 895 131 MR c np
+gs 665 311 895 131 MR c np
c8
-242 0 713 377 2 MP stroke
-gs 783 326 103 103 MR c np
- 25 25 834 377 FO
+242 0 713 376 2 MP stroke
+gs 783 325 103 103 MR c np
+ 25 25 834 376 FO
gr
gr
% sol = interp1(1./X((round(1)):(end),1)',G_D((round(1)):(end),4)',0,'spline')
% G_D(end,4)
-
+
+
if(strcmp(t0, '(3DFichCube)') || strcmp(t0, '(3DFichCube2)'))
sol = 16.2265; % Ferraz-Leite Paper
% sol = 50;
% sol = 8.28457; % Ferraz-Leite Dipl.
sol = 8.28466; % Ferraz-Leite Paper
elseif(strcmp(t0, '(3DCube)') || strcmp(t0, '(3DCube2)'))
- sol = 8.303;
+ sol = 8.30235;
elseif(strcmp(t0, '(3DCube3)'))
% sol = 1.0379;
sol = 16.604703 % Ferraz-Leite Dipl.
end
-
+% G_D(:,2+2)
+%
+% abs(log10((sqrt(sol-G_D(:,2+2))-G_D(:,2+1))))
% G_D
%% voll Analytisch
A_plots({'meshSave/1t05n05_3DFichCube_23'},'../doc/fig/1t05n05_3DFichCube')
+A_plots({'meshSave/1t05n05_3DCube_25'},'../doc/fig/1t05n05_3DCube')
A_plots({'meshSave/1t05n05_2DQuad_32'},'../doc/fig/1t05n05_2DQuad')
-A_plots({'meshSave/1t05n05_2DLShape_26'},'../doc/fig/1t05n05_2DLShape')
+A_plots({'meshSave/1t05n05_2DLShape_30'},'../doc/fig/1t05n05_2DLShape')
%% Isotrop Uniform
A_plots({'meshSave/1t1n0_2DQuad_6'},'../doc/fig/1t1n0_2DQuad')