N = size(elements,1);
A1 = zeros(N);
-% A1 = mex_build_V(coordinates,elements,1,1);
+ A1 = mex_build_V(coordinates,elements,1,1);
% untere schranke s t obere schranke k l
intF = @(f,a,b,c,d,r,t,u,v)...
ej = coordinates(elements(j,[1,2,4])',:);
ek = coordinates(elements(k,[1,2,4])',:);
-% d = ek(1,:) - ej(1,:)
+ d = ej(1,:) - ek(1,:)
-% ej = ej - repmat(ej(1,:),3,1);
-% ek = ek - repmat(ek(1,:),3,1);
+ ej = ej - repmat(ej(1,:),3,1)
+ ek = ek - repmat(ek(1,:),3,1)
- d = zeros(1,3);
+% d = zeros(1,3);
% if(j~=k)
A1(j,k) = surfDoubleQuad(@(x1,x2,y1,y2) 1/sqrt((x1-y1-d(1)).^2+(x2-y2-d(2)).^2+d(3).^2)...
- ,ej(1,1),ej(2,1),ej(1,2), ej(3,2),ek(1,1), ek(2,1),ek(1,2), ek(3,2),4);
+ ,ej(1,1),ej(2,1),ej(1,2), ej(3,2),ek(1,1), ek(2,1),ek(1,2), ek(3,2),8);
A1(k,j) = A1(j,k);
% else
d[i] = dt[i] + y2[i];\r
}\r
}\r
-\r
+ mexPrintf("(%f,%f)(%f,%f)+(%f,%f,%f)\n",fabs(xa[rxa]), fabs(xb[rxb]), fabs(ya[rxa]),\r
+ fabs(yb[rxb]), d[rxa], d[rxb], d[rx]);\r
if (rx == ry) {\r
if (rxa == rya) {\r
tmp = ctypeP(fabs(xa[rxa]), fabs(xb[rxb]), fabs(ya[rxa]),\r
+mex mex_build_V.cpp slpRectangle.cpp
+
%lade Netz
load meshSave/test1_1_1
%Berechne V 2 mal
%Voll Analytisch
- V1 = mex_build_V(coordinates,elements,[0.7],[1]);
+% V1 = mex_build_V(coordinates,elements([10,6],:),[0.7],[1]);
%SemiAnalytisch
- V2 = mex_build_V(coordinates,elements,[0.3 ],[0]);
-% V2 = build_A2(coordinates,elements);
+ V1 = mex_build_V(coordinates,elements([10,6],:),[0.5 ],[0]);
+ V2 = build_A2(coordinates,elements([10,6],:));
%Vergleiche beide Matritzen
spy(Vdif>10^-16)
max(max(Vdif))
- figure(2)
- max(max(abs(V2'-V2)))
- spy(abs(V2'-V2)>10^-16)
+% figure(2)
+% max(max(abs(V2'-V2)))
+% spy(abs(V2'-V2)>10^-16)
\ No newline at end of file