\item Berechne Galerkinlösung $\phi_{l}^{(i)} \in P^0(\T_l^{(i)})$
% \item $\enorm{\phi^{(i)}_{l/2}}$
% \item $\enorm{\phi^{(i)}_l}$
- \item $error = \sqrt{\enorm{\phi}^2 - \enorm{\phi_l^{(i)}}^2}$
+ \item $error = \sqrt{\enorm{\phi}^2 - \enorm{\phi_{l}^{(i)}}^2}$
\item $\mu_{l,i} := \norm{\varrho^{1/2}(\phi_{l/2}^{(i)} - \phi_{l}^{(i)} )}$
\item $\eta_{l,i} = \enorm{\phi_{l/2}^{(i)} - \phi_{l}^{(i)}}$
xd_fine = xo_fine'-x_fine;
% |||h/2 -h|||
- eta = xd_fine'*A_fine*xd_fine;
+% eta = xd_fine'*A_fine*xd_fine;
% \tilde \mu ( h/2 -h + L_2 )
mu = hmin.*b.*sum((x_fine(f2s)'-repmat(x',4,1)).^2)'/4;
%Energienorm^2 Berechnen |||h||| & |||h/2|||
- xe_fine = x_fine'*A_fine*x_fine;
- xe = x'*A*x;
+% xe_fine = x_fine'*A_fine*x_fine;
+ xe_fine = b_fine'*x_fine;
+% xe = x'*A*x;
+ xe = b'*x;
+
+ eta = xe_fine-xe;
save_A{i} = A_fine;
save_x{i} = x_fine;
- data = [data type(i) sqrt(sum(tmu)) sqrt(eta) xe_fine sqrt(sum(mu))...
+ data = [data type(i) sqrt(sum(tmu)) sqrt(eta) xe sqrt(sum(mu))...
min(hmin)/max(hmax) min(hmax)/max(hmax) min(hmin./hmax)];
end
time(2) = toc;