leg3 = {};
sym = {};
-rows = 9;
+rows = 11;
for i = 1:length(files)
for i = 1:step
leg0 = {leg0{:}...
['tilde \mu ' l0 l1{i}]...
+ ['tilde \mu_2 ' l0 l1{i}]...
['\eta ' l0 l1{i}]...
['error ' l0 l1{i}]...
['\mu ' l0 l1{i}]...
+ ['\kappa ' l0 l1{i}]...
}';
leg1 = {leg1{:}...
[ l0 l1{i}]...
i=0;
-[shift k] = min(G_D(1:end-5,2+1+rows*i)*G_D(1,2)/G_D(1,3)-G_D(1:end-5,2+0+rows*i));
-shift = shift+shift/10;
+% [shift k] = min(G_D(1:end-5,2+1+rows*i)*G_D(1,2)/G_D(1,3)-G_D(1:end-5,2+0+rows*i));
+% shift = shift+shift/10;
% eta = G_D(:,2+1+rows*i)*(G_D(k,2)-shift)/G_D(k,3)
%
% shift2 = shift2+shift2/10;
% error*(eta(l)-shift2)/error(l)
-loglog(repmat(X(:,i+1),1,4),[G_D(:,2+rows*i) ...
+loglog(repmat(X(:,i+1),1,6),[G_D(:,2+rows*i) ...
+ G_D(:,2+8+rows*i)...
G_D(:,2+1+rows*i)...*(G_D(k,2)-shift)/G_D(k,3)...*G_D(1,2)/G_D(1,2+1+rows*i) ...
... sqrt(abs(sol - G_D(:,2+2+rows*i)))...*G_D(1,2)/sqrt(abs(sol - G_D(1,2+2+rows*i)))...
sqrt(abs(sol - G_D(:,2+2+rows*i)))...*(G_D(k,2)-shift)/G_D(k,3)...
G_D(:,2+3+rows*i)...*G_D(1,2)/G_D(1,2+3+rows*i) ...
+ [ 0; sqrt(G_D(2:end,2+9+rows*i)-G_D(1:end-1,2+9+rows*i))]...
],type2sym{i+1});
hold on
for i = 1:step-1
-loglog(repmat(X(:,i+1),1,4),[G_D(:,2+rows*i) ...
+loglog(repmat(X(:,i+1),1,6),[G_D(:,2+rows*i) ...
+ G_D(:,2+8+rows*i)...
G_D(:,2+1+rows*i)...*G_D(1,2)/G_D(1,2+1+rows*i) ...
sqrt(abs(sol - G_D(:,2+2+rows*i)))...*G_D(1,2)/sqrt(abs(sol - G_D(1,2+2+rows*i)))...
G_D(:,2+3+rows*i)...*G_D(1,2)/G_D(1,2+3+rows*i) ...
+ [ 0; sqrt(G_D(2:end,2+9+rows*i)-G_D(1:end-1,2+9+rows*i))]...
],type2sym{i+1});
end
%data -> ErgebnisMatrix
data = size(G_E,1);
%save_* -> ZwischenSpeicherung
- save_A = {};
- save_x = {};
- save_A_fine = {};
- save_x_fine = {};
+% save_A = {};
+% save_x = {};
+% save_A_fine = {};
+% save_x_fine = {};
%Alle MatrixBrechenungsArten mit dem selben Netz berechnen
for i = 1:length(type)
x_fine = D*y;
con = cond(A);
end
+
% \tilde \mu ( \Pi h -h + L_2 )
tmu = hmin.* b .* sum((x_fine(f2s)'-repmat(sum(x_fine(f2s)',1)/4,4,1)).^2)' /4;
-
%Fehlerschätzer 2 aufbauen
V = mex_build_V(G_C,G_E,zeta,type(i));
% xe = x'*A*x;
xe = b'*x;
+ %\tilde \mu 2 = ( ||\Pi h|| - ||h||)
+ tmu2 = hmin.* b.* (...
+ sum((x_fine(f2s)').^2)'-sum(repmat(sum(x_fine(f2s)',1)/4,4,1).^2)'...
+ ) /4;
+
eta = abs(xe_fine-xe);
- save_A_fine{i} = V_fine;
- save_x_fine{i} = x_fine;
-
- save_A{i} = V;
- save_x{i} = x;
+% save_A_fine{i} = V_fine;
+% save_x_fine{i} = x_fine;
+%
+% save_A{i} = V;
+% save_x{i} = x;
- data = [data type(i) sqrt(sum(tmu)) sqrt(eta) xe sqrt(sum(mu))...
- min(hmin)/max(hmax) min(hmax)/max(hmax) min(hmin./hmax) con];
+ data = [data ...
+ type(i) ...
+ sqrt(sum(tmu))...
+ sqrt(eta) ...
+ xe ...
+ sqrt(sum(mu))...
+ min(hmin)/max(hmax)...
+ min(hmax)/max(hmax)...
+ min(hmin./hmax) con...
+ sqrt(sum(tmu2))...
+ xe_fine...
+ ];
end
time(2) = toc;
%Alle Relevanten zwischenInformationen Speichern
- out = '_';
- if(length(varargin)~=0)
- out = varargin{1};
- end
- typeN = int2str(type);
- save (['meshSave/fine_' out typeN(typeN~=' ') '_' int2str(size(G_T,1))],...
- 'coo_fine', 'ele_fine','neigh_fine','f2s','data',...
- 'save_A','save_x','save_A_fine','save_x_fine','b','b_fine')
+% out = '_';
+% if(length(varargin)~=0)
+% out = varargin{1};
+% end
+% typeN = int2str(type);
+% save (['meshSave/fine_' out typeN(typeN~=' ') '_' int2str(size(G_T,1))],...
+% 'coo_fine', 'ele_fine','neigh_fine','f2s','data',...
+% 'save_A','save_x','save_A_fine','save_x_fine','b','b_fine')
% clear 'coo_fine' 'ele_fine' 'neigh_fine' 'f2s'
% plotShape(G_C,G_E,'');